Center of the Universe
 CONCEPTUAL VISION PLAN \& FEASIBILITY STUDY

Acknowledgments

Client

Downtown Tulsa Partnership

Stakeholder Advisory Group

Downtown Tulsa Partnership
City of Tulsa
Tulsa Country
Tulsa Foundation for Architecture
Partner Tulsa
Williams Companies
Tulsa Community College
American Residential Group
Public Service Company of Oklahoma
AHHA
Garver Engineering
Comstara Development
We Are Moore

Focus Group Participants

Oklahoma Jazz Hall of Fame
Visit Tulsa
Human Rights Commission
Greater Tulsa Area Indian Affairs Committee
COTU Festival
Bob Haozous
University of Oklahoma Students
George Kaiser Family Foundation
Tulsa Regional Chamber
Greenwood Main Street
Area Businesses

Consultant Team

MKSK

Project / Design Lead

SELSER SCHAEFER \wedge RCHITECTS
Design Collaboration / Local Architect

Acoustic Features Analysis / Design Review

Table of Contents

INTRODUCTION 04
PROJECT BACKGROUND 06
COMMUNITY ENGAGEMENT 12
VISION PLAN 16\& CONCEPT DESIGN
DESIGN FEATURES 32\& GUIDING PRINCIPLESADDITIONALOPPORTUNITIES
CONCEPT ESTIMATE 50
ACOUSTIC REPORT58

Introduction

History \& Importance to Tulsa

The Center of the Universe and the Boston Avenue Pedestrian Bridge is an iconic public space in the heart of downtown Tulsa. The existing plaza design was completed in the 1980s after a damaging fire, and this was also when the beloved acoustic anomaly was created.

At this time, the Boston Avenue Bridge was an important pedestrian connection for employees of the Williams company who occupied, then, One Williams Tower as well as the Union Depot building. Decades later, the Boston Avenue Bridge and Center of the Universe is the primary pedestrian connection between Tulsa's downtown business district and the Tulsa Arts District.

The mystery and phenomenon of the acoustic anomaly has made the Center of the Universe a first-day tourist destination for visitors to Tulsa.

Continued Investment

There are also many accounts of engagements, weddings, and other memorable moments that Tulsans have experienced on the bridge over the years.

Over the course of 40 years, the Boston Avenue Bridge and public space has fallen into disrepair, While the City of Tulsa embarks on a maintenance project for the bridge structure, this Conceptual Vision Plan \& Feasibility Study looks to reimagine the Center of the Universe and Boston Avenue Bridge so that it can continue to be enjoyed by Tulsans and visitors for years to come. The Conceptual Vision Plan strives to make the Center of the Universe a best-in-class public space while upholding the historical and cultural significance it has for Tulsa and beyond.

Pi ROEAG BACKCROUND

In-Depth Inspection

City of Tulsa

In 2021 the City of Tulsa requested an inspection of the Boston Avenue Bridge to determine the feasibility of the Center of the Universe as an event destination.

In 2021, the City of Tulsa engaged Garver Engineering in an in-depth inspection of the Boston Avenue Bridge over the BNSF railroad tracks. With the already popular Center of the Universe destination located above the bridge deck, there was a desire to determine the bridge's suitability as an event destination. The inspection explores the possibility of rehabilitating the bridge and extending its life span and studies the structure's ability to support additional pedestrian loading.

The bridge also serves as access to the Oklahoma Jazz Hall of Fame, which is located in the historic Union Depot building and a Tulsa Country parking structure. The inspection helps to determine the feasibility of the structure to continue to provide access to these businesses and to support their future needs.

The report concluded that below deck repairs to extend the life of the bridge would cost at least $\$ 4$ million. These improvements would maintain the bridge but not improve the pedestrian loading or improve the pedestrian experience above the bridge deck.

Pedestrian Loading Analysis

Location	Span No.	Max. Pedestrian Load
Main Bridge - Longitudinal Beams	0	108 psf
	1	153 psf
	2	173 psf
		173 psf
	4	120 psf
	5	85 psf
	6	60 psf
	7	82 psf
Main Bridge - Cantilever Beams		50 psf
Station Walk Bridge Transverse Edge Beams	0	111 psf
	1	19 psf
	2	22 psf
	3	-7 psf
Station Walk Bridge Longitudinal Beams	0	148 psf
	1	91 psf
	2	116 psf
	3	119 psf
Station Walk Bridge - Deck Slab		127 psf
Station Walk Bridge - Cantilever Slab		117 psf

Boston Avenue Bridge Rehabilitation

 City of TulsaFollowing the In-Depth Inspection, the City of Tulsa developed plans to extend the life of the Boston Avenue Bridge with repairs to the bridge structure.

Following the In-Depth Inspection Report, the City of Tulsa developed construction plans with Garver Engineering to extend the life of the Boston Avenue Bridge. The plans consist primarily of surface repairs to the belowdeck structure including concrete repairs to columns, beams, and soffit, and expansion joint replacement. Above-deck repairs include pavement patches, floodcoating, and resurfacing the asphalt driveway.

The proposed improvements are intended to extend the life of the bridge, but will not increase pedestrian loading or improve the pedestrian experience. Improvements such as site lighting, landscaping, public art, or other amenities are not included in the construction project.

As of December 2022, the Pre-Mylar construction plans were being reviewed by the BNSF railroad with an anticipated bid date of February 2023.

\$4.14 Million

Estimated Cost for Repairs

15+ Years

Estimated Extended Lifespan

Example of below-deck concrete to be repaired

Example of pavement to be patched / repaired

Re-imagining the Center of the Universe Downtown Tulsa Partnership

In 2022 the Downtown Tulsa Partnership began a community engagement and planning process to re-imagine the pedestrian experience on the Boston Avenue Bridge.

In early 2022, the Downtown Tulsa Partnership kicked off a public engagement and planning process for the renovation of the Center of the Universe plaza with the goal of improving the pedestrian experience on the Boston Avenue Bridge. With an understanding of the City of Tulsa's Bridge Rehabilitation project, which primarily consists of below-deck structural improvements, the Re-imagining the Center of the Universe project explores the feasibility of above-deck surface improvements, pedestrian amenities, and programming. The project also looks at the long term viability of rehabilitating the bridge with history, community, and culture in mind.

As part of the feasibility study, a conceptual vision plan was developed to respond to community priorities and develop a budget for implementing the above-deck improvements. The City of Tulsa has identified capital funding for the improvements and the Downtown Tulsa Partnership is fundraising additional dollars to realize the vision for the Boston Avenue Bridge.

Anticipated Timeline

\$3.25-6.25 Million

Estimated Plaza Improvements

\$. 25 Million

Maintenance Reserve

Eingagement Summary

Beginning in July 2022, the project team embarked on a multi-faceted public engagement process that gathered feedback specific to the proposed conceptual vision plan design. The greatest number of touchpoints were from an online public survey that ran from October to November. The survey, which was promoted through television, radio, and newspaper outlets received nearly 1000 responses. Focus groups that included key stakeholders were brought together several times for in-person and virtual touchpoints. The Downtown Tulsa Partnership also continues to receive many unsolicited emails from individuals who are interested in the project.

All of these unique engagements help to paint a picture of the unique place that the Center of the Universe holds in the lives of Tulsans and the history of Tulsa.

Community Priorities

PRIORITIZE PEDESTRIANS

What is now a shared space amongst cars, scooters, walkers, bikes is overwhelmingly believed to be capable of better serving pedestrians and prioritizing walking as dominant use.

CELEBRATE ART \& CULTURE

The bridge is an asset for the Arts District and Historic Greenwood community. It is also an iconic and recognizable asset within the arts and cultural expression community of Tulsa - the redesign should inherit this creativity.

PRESERVE THE ANOMALY

The acoustical attributes have made this space iconic to locals, but there are a range of ways to invite others to the experience through education, gaming and play, and
wayfinding both in and around the bridge.

PROVIDE CREATURE COMFORTS

The bridge should be better adapted to the comforts we all seek as humans: shade, seating, water, lighting, safety refuge, rest, and play for children!

Vision Plan

Vision Plan Components \& Design Features

Center of the Universe Plaza

Preserved feature walls that create the beloved acoustic effect at the Center of the Universe Plaza

Pedestrian Connection

A dedicated and safe pedestrian path from E 1st Street to E Archer Street

Creature Comforts

Amenities such as shade, seating, places to play, and places to relax

Art \& Culture

A celebration of existing art, history, and culture including the Artificial Cloud, and dedicated places for new public art

Lighting

Upgraded site lighting so the Boston Avenue Bridge is safe and vibrant at all times of day or night

South Approach

The south approach is a shared space for vehicles and pedestrians. A row of shade trees and ornamental plantings provide separation between the uses. The brick "link" pavement design is restored in place and leads pedestrians toward the Artificial Cloud and Center of the Universe. The South Approach is open to East 1 st Street and will be a prominent place for wayfinding and large-scale public art. A passive lawn area and shade structure provide creature comforts for visitors while maintaining open views to the Tulsa Union Depot.

North Approach

Where the Boston Avenue Bridge meets E Archer Street, the North Approach is an extension of the Tulsa Arts District. A terraced lawn is a venue for small performances and public events. The North Approach also includes updated site lighting, bench, seating, and an area for children to run and play. Shade tree plantings and a covered seating area provide for a comfortable experience for visitors to the Center of the Universe.

Center of the Universe Plaza

The Center of the Universe Plaza is re-imagined as a destination on the Boston Avenue Bridge The original concrete feature walls are protected in place to preserve the mystery and phenomenon of the acoustic anomaly. This plan proposes two options for the Center of the Universe Plaza: an option with an architectural shade canopy that frames the feature walls and an alternate with a signature light feature floating above the circular plaza area.

Ornamental planting, additional seating areas, new plaza pavement, and site lighting are among the many improvements proposed for the Center of the Universe Plaza.

COTU Plaza Alternates

OPTION 1

Architectural Shade Canopy

An architectural shade canopy frames the interior walls and articulates the circular shape of the plaza upward. Along with providing shade on hot summer days, the shape of the Center of the Universe can be seen from afar from the approaches on East 1 st and Archer Streets.

OPTION2

Signature Lighting Feature

A signature lighting feature is suspended from a supporting structure and floats above the circular plaza. This option will be subtle during the day, but at night it will provide a light that traces the shape of the feature walls and announces the location of the acoustic phenomenon.

Tulsa Depot Plaza

- Celebrate the historic Tulsa Union Depot architecture
- Provide a high quality pedestrian experience for visitors to the Oklahoma Jazz Hall of Fame and the Center of the Universe
- Provide accessible parking spaces for Jazz Hall of Fame
- Provide loading / valet lane for Jazz Hall of Fame

Acoustic Feature \& Phenomenon

An acoustic anomaly is an occurrence that can be found throughout the built environment in both architecture and landscape. Like Tulsa's Center of the Universe, the most well known acoustic anomalies occur in civic spaces and are known as whispering walls or echo spots, and they become mysterious spectacles and tourist destinations.

Acoustic Focusing

The unique echo effect that visitors experience at the Center of the Universe is an example of acoustic focusing. There are different types of acoustic focusing depending on the type of surface the sound is bouncing off of (reflection, anti-focusing, and focusing). At the Center of the Universe, sound waves reach the hard, curved surfaces of the feature walls, which are a focusing surface, and are bounce back to the center of the plaza, creating a hot spot. The proximity of the human mouth to ear is also a factor in experiencing the echo effect -- and the reason why the echo is experienced by the speaker and not by bystanders.

Preservation

The acoustic anomaly at the Center of the Universe would not exist without the curved walls and hard, non-porous materials of the plaza, so this conceptual vision plan preserves those features and builds on the plaza in ways that will not alter, dampen, or interfere with the elements that create the beloved acoustic effect.

Whispering Wall Anomalies

National Statuary Hall | Washington DC

Echo Effect Anomalies

Pioneer Courthouse Square I Portland OR

Grand Central Terminal | Manhattan NY

Mystery Spot I Lake George NY

Acoustic Feature \& Phenomenon

GUIDING PRINCIPLES

- Preserve the curved feature walls that create the echo effect
- Maintain hard, non-porous surfaces in the plaza
- Build on the plaza in ways that will not alter, dampen, or interfere with the elements that cause the echo effect

Sound Reflection

Sound waves are reflected from a surface similar to light waves from a shiny surface or prism

Example: The straight, parallel and perpendicular walls of a gymnasium reflect sound and create an echo

Anti-Focusing Surface

Convex or angled surfaces disperse reflecting sound waves outward and produce a more even sound

Example: An auditorium has convex or angled walls to project sound evenly and avoid echoes

Focusing Surface

Concave surfaces focus the reflecting sound waves inward and produce "hot spots"

Example: This is the phenomenon that is experienced at the Center of the Universe

Acoustic Report Summary

Artificial Cloud

Bob Haozous | Apache Sculptor

- The Artificial Cloud represents the delicate balance between man's use of technology and its impact on the environment
- The sculpture's location is historically the demarcation line between "white" and "black" Tulsa
- The metal material is intended to weather and deteriorate, representing degradation of the environment

GUIDING PRINGIPLES

- Protect the Artificial Cloud in place
- Provide history and context through environmental graphics that do not compete or take away from the sculpture
- Study methods for discouraging the use of the "gong"
- Protect the sculpture from vandalism

Curbed Planter Option

Decorative Rail Option

Lighting

GUIDING PRINGIPLES

- Upgraded site lighting that makes the Boston Avenue Bridge a safe route and destination at all hours of the day and night
- Lighting that highlights the unique features of the site including the Tulsa Union Depot, the Artificial Cloud, and the Center of the Universe
- Artistic lighting such as the Trace installation

Planting

CUIDING PRINCIPLES

A planting showcase for Tulsa:

- Indigenous plants
- Native / environmental qualities including prairie grasses and pollinators
- Plants with sensory qualities that appeal to the senses of touch, sight, and smell
- Small ornamental trees such as the Eastern Redbud

EXISTING BRIDGE STRUCTURE

Eastern Redbud

Little Bluestem

Muhly Grass

Willow Leaf Sunflower

Russian Sage

Shade

CUIDING PRINCIPLES

- Provide shade in multiple locations throughout the site
- Timeless architecture should relate to the Boston Avenue Bridge structure and the Tulsa Union Depot

Example Architectural Shade Structure

Sitting \& Gathering

CUIDING PRINCIPLES

- Provide high quality and inviting fixed seating
- Program spaces with furniture during pop up events
- Places for different age demographics
- Places for different sized groups including small to medium-sized gatherings and individuals
- Bench designs that discourage vandalism and wear and tear

Play Area

GUIDING PRINCIPLES

- Fun and imaginative spaces for all
- Play elements that fit into the context of the Center of the Universe and the broader Tulsa Arts District
- Elements that appeal to the senses and add to the idea of phenomenon of the Center of the Universe

Train Watch

CUIDING PRINCIPLES

- A passive area above the BNSF railroad tracks to watch passing trains and celebrate the history of the Tulsa Union Depot
- Stepped seating that provides views above the existing balustrade
- Seating that can accommodate individuals or groups

Looking East

Example Stepped Seating

Donor Opportunities

Center of the Universe | Conceptual Vision Plan \& Feasibility Study

Lower Sports Park

- Utilize the area beneath the Boston Avenue Bridge, north of the BNSF railroad tracks for community recreation space
- This space could include sports courts, dog agility areas, murals and / or sculpture
- Lighting, access control, and safety will be a priority in the design of this space
- This concept includes the repurposing of one entire row of parking into a pedestrian path to provide access to the space

Triborough Bridge Playground I New York NY

Waterfront Park | Mount Pleasant SC

Dog Park East River Esplanade | Manhattan NY

Future Art \& Design Elements

The Boston Avenue Bridge has been an evolving platform for public art throughout it's lifespan and will continue to be a canvas for various mediums. Future public art and activations will come to the bridge through public private partnerships. Through the public engagement process, many future opportunities for public art were discussed for the bridge including:

- Parking Garage Façade enhancements
- Art and activations that build on the mystery and phenomenon of the Center of the Universe -- art that can be experienced in unique ways that engage the senses
- Installations that provide a sense identity / arrival to the Center of the Universe and the Tulsa Arts District
- Art and activations that allow for "selfie" moments
- High quality Art Deco architectural elements and sculpture
- Artistic wayfinding and environmental graphics that tell the unique history of the Boston Avenue Bridge, the Tulsa Arts District, and the Tulsa Union Depot.
- Lighting elements such as the Trace light installation
- Public events on the Boston Avenue Bridge

Estimate Summary

OVERALL ESTIMATE SUMMARY

Tulsa County Base Bid
\$2,321,820
Portion of pedestrian bridge work within Tulsa County

City of Tulsa

Portion of pedestrian bridge work within City of Tulsa
Sports Courts
\$454,751
Portion of work in the Bank of Oklahoma parking lot

Overall Project Total Cost $\$ 6,300,358$

Center of the Universe
Concept Estimate
Prepared by: MKSK

Date:
Project: $\quad \frac{1211212022}{\text { Center of the Universe in Tulsa, ok }}$
OVERALL ESTIMATE SUMMARY

tem Ext. Description		Total Cost	
Tulsa County Base Bid			
Portion of Pedestrian Bridge work within Tusa County		\$	2,321,820.05
City of Tulsa Base Bid			
Portion of Pedestrain Bridge work within the City of Tusa		\$	3,523,787.30
Sports Courts			
Work within the City of Tusa		\$	454,751.00
COST SUMMARY			
Refer to atached sheets for itemized breakdown.	Overall Project Total Cost	\$	6,300,358.35

General Notes

MKSK HAS NO CONTROL OVER THE COST OF LABOR, MATERALSS OR THE CONTRACTORS METHODS OF OETTERMINIG BID PRICES, OR OVER
OR CONSTRUCTION COST WIL NOT VARY FROM ANY ESTMATES OF PROBABLE CONSTRUCTION COS

Center of the Universe, Tulsa
Prepared by:
Con
MKSK
Date:
Project:
$\quad \frac{12112 / 2022}{\text { Center of the Universe - Boston Avenue Pedestrian Bridge }}$
City of Tulsa's Portion of the Pedestrian Bridge Improvements

Item	Ext.Description	Quantity	Unit	@		Unit Cost	$=$	Total Cost	Comments
Division 01 -General Requirements									
014000 Quality Requirements									
01.01	Gen. Requirements/ Insurance+ Bond	1	EA	@	s	115,000.00		115,000.00	0.05\%
01.02	Inspections/Testing/Perrititing Fees	1	EA	@	s	23,000.00	= \$	23,000.00	0.01\%
01.03	Bonds	1	EA	@	s	23,000.00	= $\$$	23,000.00	0.01\%
							\$	-	
$\underline{01.02}$	General Contractor Fees	1	EA	@	s	$184,000.00$	= $\$$	184,000.00	0.08\%

15000 Temporary Facilities and Controls

Erosion and Sediment Control
01.06
Stabilized construction

01.06	Stabilized construction entrance	1	EA	@	\$	2,000.00		2,000.00
01.07	Concrete washout area	1	EA	@	\$	1,500.00	= \$	1,500.00
01.08	Wheel washout area	1	EA	@	\$	1,000.00	= $\$$	1,000.00
$\underline{01.09}$	Inlet protection	10	Ls	@	\$	100.00		1,000.00

Division 02 - Site Demolition								
024119 Selective Demolition								
02.01	Existing pavers and gravel base removal	415	sY	@	\$	$15.00=$		6,225.00
02.02	Asphalt and gravel base removal	0	sY	@	\$	18.00	\$	-
02.03	Saw cut existing paving	60	LF	@	\$	10.00		600.00
02.04	Concrete walk and gravel base removal	2214	sY	@	s	$22.00=$		48,708.00
02.05	Concrete curb removal	80	LF	@	s	22.00	\$	1,760.00
02.06	Existing 24" diam concrete bollards to be removed	18	EA	@	s	$150.00=$		2,700.00
02.07	Existing concrete seat walls to be removed.	1424	LF	@	s	$30.00=$		42,720.00
02.08	Existing shade trees to be removed	12	LF	@	s	$300.00=$	\$	3,600.00
02.09	Existing plant material to be removed	1400	SF	@	s	2.00		2,800.00
02.10	Existing tree grates to be removed.	16	LF	@	\$	100.00		1,600.00
02.11	Existing soils to be removed	296	CY	@	s	$30.00=$	\$	8,880.00
02.12	Light pole and conduit to be removed	10	EA	@	s	$500.00=$		5,00.00
02.13	Ex. concrete balustrade (not in project)	605	EA	@	\$	- =		-
02.14	Ex. metal rail (not in project)	371	EA	@	s		\$	
02.15	Existing sign to be removed	1	EA	@	s	$50.00=$		50.00
						Subtotal	\$	124,643.00
Division 03 - Concrete								
033300 Architectural Concrete								
03.01	Concrete seatwalls on grade	321	LF	@	s	$450.00=$		144,450.00
03.02	Concrete seatwalls on structure	625	LF	@	s	$250.00=$	\$	156,250.00
$\underline{\underline{03.03}}$	Ipe seating slats on top of seatwall	1,110	SF	@	s	$50.00=$		55,500.00
						Subtotal	\$	356,200.00
Division 05 - Metals								
055213 Pipe and Tube Railing								
05.01	Metal planter walls	817	LF	@	\$	$150.00=$		122,550.00
05.02	Metal spindle inset for concrete balustrade	605	EA	@	\$	$40.00=$	\$	24,200.00
05.03	Decorative metal guardrail	250	LF	@	\$	$150.00=$		37,500.00
						Subtotal	\$	184,250.00

City Portion

County Portion

Center of the Universe, Tulsa
Concept Estimate
Date:
Project:
$\quad \frac{121212022}{\text { Center of the Universe - Boston Avenue Pedestrian Bridge }}$
Tulsa County Portion of the Pedestrian Bridge Improvements

Item Ext.Description

\qquad Quantity Unit Division 01 - General Requirements

01.02 Gen. Requirements/ Insurance + Bond $\quad 1$ EA @ $\$ 100,000.00=\$ 100,000.00$ 0.05\%

01.04	General Contractor Fees	1	EA	E

| 015000 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 01.05 | 1 | Temporary Facilities and Controls | | |
| Mobilization | EA | @ | $15,000.00=\$$ | $15,000.00$ |

1 LS @ \$ $10,000.00=\$ \quad 10,0000$

| 01.07 | 6^{\prime} temporary chainlink fence panel and gates | 500 | LF | Q |
| :--- | :--- | :--- | :--- | :--- | :--- |

Erosion and Sediment Control							
01.08	Stabilized construction entrance	1	EA	@	\$	2,000.00 $=$	2,000.00
01.09	Concrete washout area	1	EA	@	\$	$1,500.00=\$$	1,500.00
01.10	Wheel washout area	1	EA	@	\$	$1,000.00=\$$	1,000.00
01.11	Inlet protection	10	Ls	@	\$	$100.00=\$$	1,000.00

Division 02 - Site Demolition

2419 Selective Demolition								
02.01	Existing pavers and gravel base removal	328	sY	@	\$	15.00		4,920.00
02.02	Asphalt and gravel base removal	1,750	sY	@	\$	18.00		31,500.00
02.03	Saw cut existing paving	60	LF	@	\$	10.00	=	600.00
02.04	Concrete walk and gravel base removal	1322	sY	@	\$	22.00	=	29,084.00
02.05	Concrete curb removal	1260	LF	@	\$	22.00		27,720.00
02.06	Existing 24" diam concrete bolards to be removed	94	EA	@	\$	150.00	=	14,100.00
02.07	Existing concrete seat walls to be removed.	933	LF	@	\$	$30.00=$	=	27,990.00
02.08	Existing shade trees to be removed	4	LF	@	\$	300.00		1,200.00
02.09	Existing plant material to be removed	1915	SF	@	\$	2.00	=	3,830.00
02.10	Existing tree grates to be removed.	3	LF	@	\$	100.00	=	300.00
02.10	Existing soils to be removed	142	CY	@	\$	30.00	=	4,260.00
02.11	Light pole and conduit to be removed	9	EA	@	\$	500.00	=	4,500.00
02.12	Ex. concrete balustrade (not in projectlcontract)	212	EA	@	\$	-	=	-
02.13	Ex. metal rail (not in projectcontract)	345	EA	@	\$	- $=$	= $\$$	-
02.14	Existing sign to be removed	5	EA	@	\$	$50.00=$	=s	250.00
						Subtotal	s	150,254.00
Division 03 - Concrete								
033300 Architectural Concrete								
$\underline{03.01}$	Concrete seatwalls on structure	142	LF	@	\$	250.00	=s	35,500.00
						Subtotal	s	35,500.00
Division 05-Metals								
055213 Pipe and Tube Railing								
05.01	Stainess steel handrails	20	LF	@	\$	$100.00=$		2,000.00
05.02	Metal guardrail	115	Ls	@	\$	100.00	= $\$$	11,500.00
05.03	Metal planter walls	656	LF	@	\$	$150.00=$		98,400.00
05.04	Metal spindle inset for concrete balustrade	212	EA	@	\$	40.00		8,480.00
05.05	Decorative metal guardrail	250	LF	@	\$	150.00		37,500.00

Division 10 - Specialties								
101416 Pre-engineered Shade Structure								
10.01	Shade structure ($20^{\circ} \times 48^{\prime}$)	1	EA		\$	40,0		0,000.00
						Subto	\$	240,000.00
101423 Signage								
10.02	Identification monument sign	1	EA	@	s	25,000.00 $=$		25,000.00
$\xlongequal{10.03}$	Regulatory signs	6	EA	@	s	$225.00=$		1,350.00
						Subtotal	\$	26,350.00
Division 22 - Plumbing - Site								
220000 General PlumbingWater Service								
22.01	Tapping Sleeve and Valve	1	EA	@	\$	2,500.00 $=$		2,500.00
22.02	1 " Water Service	200	LF	@	s	$25.00=$		5,000.00
22.03	Hotbox	1	EA	@	s	$9,000.00=$		9,000.00
22.04	Water Tap Fees	1	Ls	@	s	$25,000.00=$		25,000.00
						Subtotal	\$	41,500.00
221423 Storm Drainage Piping								
22.05	Underdrains	500	LF	@	s	$10.00=$		5,000.00
22.06	Yard drains	16	EA	@	\$	$225.00=$		3,600.00
22.07	Curb inlets	4	EA	@	\$	$3.000 .00=$		12,000.00
						Subtota	\$	20,600.00
Division 26 - Electrical - Site								
260000 Site Electrical								
26.01	Basic requirements - permits and gen conditions	1	Ls	@	\$	5,000.00 $=$		5,000.00
26.02	Raceways: 1.5"EMT, PVC w pullwire	500	LF	@	\$	15.00		7,500.00
26.03	NEMA 3R Pull box $24^{\prime \prime} \times 24$ " $\times 10$ " dp	3	EA	@	\$	$750.00=$		2,250.00
26.04	$3^{\prime} \times 3^{\prime} \times 3^{\prime}$ dp handhole	1	EA	@	\$	2,400.00 $=$		2,400.00
26.05	GFCI/ WP adder	10	EA	@	\$	$275.00=$		2,750.00
26.06	WP power pedestal w/ $240 \mathrm{~W}-1$-ph, 50A recept for food truck	5	EA		s	2,500.00 $=$		12,500.00
26.07	WP speakers	4	EA	@	s	$3,000.00=$		12,000.00
26.08	Light pole and luminaire	12	EA	@	s	$12,000.00=$		144,000.00
						Subtotal	\$	188,400.00
Division 32 - Exterior Improvements								
321216 Asphalt Paving								
32.01	Asphalt pavement	1,220	SY	@	s	$30.00=$		36,600.00
32.02	Crosswakk striping	3	EA	@	\$	$500.00=$		1,500.00
32.03	Stop Bars	12	LF	@	s	$10.00=$		120.00
						Subtotal	\$	38,220.00
321313 Concrete Paving								
32.04	Concrete paving: 4" thk conc, Type lon subgrade	325	SF	@	\$	$10.00=$	= \$	3,250.00
32.05	Concrete paving: 4" thk conc, Type I on structure (light w.)	8,675	SF	@	\$	$12.50=$		108,437.50
32.06	Concrete paving: 4 "thk conc, Type Il on subgrade	3,266	SF	@	s	$12.00=$		39,192.00
32.07	Concrete paving: 4" thk conc, Type II on structure (light wt.)	1,956	SF	@	\$	$15.00=$		29,340.00
32.08	Concrete paving: 6 " thk conc, Type III on structure (light w.)	2,160	SF	@	\$	$20.00=$		43,200.00
32.09	Concrete steps	440	SF	@	\$	$50.00=$		22,000.00
32.10	Concrete curb - 18 " straight	315	LF	@	\$	$42.00=$		13,230.00
32.11	Concrete ADA ramps	6	EA	@	\$	$1,000.00=$		6,000.00
						Subtotal	\$	264,649.50
321400 Unit Paving								
32.12	Pedestrian unit pavers set in bitum over concrete subbase	1,116	SF	@	\$	$27.00=$		30,132.00
32.13	Vehicular unit pavers set in bitum over concrete subbase	216	SF	@	\$	$32.00=$		6,912.00
32.14	Granite curb	815	LF	@	\$	$175.00=$		142,625.00
						Subtotal		179,669.00
321813 Synthetic Grass Surfacing								
32.15	Synthetic grass	0	SY	@	\$	$18.00=$		
						Subtotal	\$	-
323300 Site Furnishings								
32.16	Sercurity bollards	21	EA	@	\$	1,200.00 $=$		25,200.00
32.17	Illuminated bollard	10	EA	@	\$	1,750.00 $=$	= \$	17,500.00
32.18	Ornamental planters - Type A	12	EA	@	\$	$2,000.00=$	= \$	24,000.00
32.19	Ornamental planters - Type B	6	EA	@	\$	2,750.00 $=$	= \$	16,500.00
32.20	Tables and chairs sets (1 table +4 chairs)	24	EA	@	\$	$3.600 .00=$	= $\$$	86,400.00
Subtotal al \$ 169,600.00								

County Portion

General Notes
UNIT PRICE VALUES DERIVED FROM RECENT BID PRICING AND MKSK ASSUMPTION OF WORK EFFORT REQUIRED.
MKSK HAS NO CONTROL OVER THE COST OF LABOR, MATERALLS OR THE CONTRACTORS METHODS OF DETERMININ BID PRICES, OR OVER COMPETTIVE BIDDING OR MARKET CONDITIONS. THEREFORE, MKSK CANNOT GUARANTEE THAT BIDS
OR CONSTRUCTION COST WILL NOT VARY FROM ANY ESTMATES OF PROBABLE CONSTRUCTION COST PREPARED BY T

Center of the Universe, Tulsa
Concept Estimate
Prepared by

Date: 12/12/2022
Project: Center of the Universe - Boston Avenue Pedestrian Bridge
City of Tulsa's Portion of the Sports Courts Improvements

Item	Ext. Description	Quantity	Unit	@		Unit Cost	$=$	Total Cost	Comments
Division 01 -General Requirements									
014000 Quality Requirements									
01.01	Gen. Requirements/ Insurance+ Bond	1	EA	@	\$	25,000.00		25,000.00	0.05\%
01.02	Inspections/ Testing/ Perrititing Fees	1	EA	@	\$	5,000.00	=	5,000.00	0.01\%
01.03	Bonds	1	EA	@	\$	5,000.00		5,000.00	0.01\%
								-	
$\underline{01.02}$	General Contractor Fees	1	EA	@	\$	40,000.00	=	40,000.00	0.08\%
						Subtotal		75,000.00	
015000 Temporary Facilities and Controls									
01.03	Mobilization	1	EA	@	\$	10,000.00	=	10,000.00	
01.04	Temporary trailer for construction support	1	Ls	@	\$	7,500.00	=	7,500.00	
00.05	$6^{\text {6 ' temporary chainlink fence panel and gates }}$	500	LF	@	\$	30.00	$=$	15,000.00	
						Subtotal		32,500.00	
Erosion and Sediment Control									
01.06	Stabilized construction entrance	1	EA	@	\$	2,000.00	=	2,000.00	
01.07	Concrete washout area	1	EA	@	\$	1,500.00	=	1,500.00	
01.08	Wheel washout area	1	EA	@	\$	1,000.00	=	1,000.00	
$\underline{\underline{01.09}}$	Inlet protection	10	Ls	@	\$	100.00	$=$	1,000.00	
						Subtotal		5,500.00	
Division 02 - Site Demolition									
024119 Selective Demolition									
02.01	Asphalt and gravel base removal	200	SY	@	\$	18.00	=	3,600.00	
02.02	Saw cut existing paving	350	LF	@	\$	10.00	=	3,500.00	
02.03	Concrete walk and gravel base removal	715	sy	@	\$	22.00	=	15,730.00	
02.04	Concrete curb removal	330	LF	@	\$	22.00	=	7,260.00	
02.05	Existing shade trees to be removed	1	EA	@	\$	300.00	=	300.00	
02.06	Existing soils to be removed	20	Cr	@	\$	30.00	=	600.00	
02.07	Light pole and conduit to be removed	3	EA	@	\$	500.00	=	1,500.00	
02.08	Existing sign to be removed	3	EA	@	\$	50.00	$=$	150.00	
						Subtotal		32,640.00	
Division 10 - Specialties and Structures									
101423 Signage									
10.01	Park signage	1	Ls	@	\$	5,000.00	=	5,000.00	
10.02	Regulatory signs	3	EA	@	\$	250.00	$=$	750.00	
Division 22 - Plumbing - Site Sutial s									
221423 Storm Drainage Piping									
22.01	Underdrains	350	LF	@	\$	10.00	=	3,500.00	
22.02	Pavement drains	8	EA	@	\$	500.00	=	4,000.00	
22.03	Trench drains	200	LF	@	\$	50.00	=	10,00.00	
22.04	12 "pipe to connect to existing system	100	LF	@	\$	35.00	$=$	3,500.00	
22.05	Catch basin	1	EA	@	\$	3,000.00	$=$	3,000.00	
						Subtotal		24,000.00	
Division 26-Electrical - Site									
260000 Site Electrical									
26.01	Basic requirements - permits \& general conditions	1	Ls	@	\$	1,500.00	=	1,500.00	
26.02	Raceways: 1.5" EMT, PVC w pullwire	600	LF	@	\$	15.00	$=$	9,000.00	
26.03	NEMA 3R Pull box 24 " $\times 24$ " $\times 10$ " dp	2	EA	@	\$	750.00	=	1,500.00	
26.04	$3^{\prime} \times 3^{3} \times 3^{\prime}$ dp handhole	1	EA	@	\$	2,400.00	=	2,400.00	
26.05	GFCI/ WP adder	6	EA	@	\$	275.00	=	1,650.00	

Seneral Notes
KKS HAS NO CONTROL OVER THE COST OF LABOR, MATERALLS, OR THE CONTRACTORS METHODS OF DETERMINIG BID PRICES, OR OVE COMPETTIVE BIDDING OR MARKET CONDITIONS. THEREFORE, MKSK CANNOT GUARANTEE THAT BIDS

OR CONSTRUCTION COST WIL NOT VARY FROM ANY ESTMATES OF PROBABLE CONSTRUCTION COST PREPARED BY T

Center of the Universe

Tulsa, Oklahoma

Acoustic Features Analysis

Report No. 22030-01
January 6, 2023

Prepared for:

MKSK and Downtown Tulsa Partnership

Coustics

Engineered Vibration Acoustic \& Noise Solutions
Submitted by:
ChadNIJ •el
Chad Himmel, PE
Associate, JEAcoustics
Texas Registered Engineering Firm F-6534

COUSTICS
Engineered Vibration Acoustic \& Noise Solution

Table of Contents

Report

1. Introduction ... 1
2. Goals.. 2
3. Acoustic Focusing Features in General.. 2
4. Acoustic Focusing at COTU .. 3
5. Recommendations.. 5

Center of the Universe, Tulsa, Oklahoma Acoustic Features Analysis Report No. 22030-01
January 6,$2023 ;$ Page 1

1. Introduction

JEAcoustics (JEA) was retained to conduct evaluations of acoustic reflection patterns, geometry, materials and surface finishes, with respect to the existing and future planning for the Center of the Universe (COTU) acoustical experience on the Boston Avenue Pedestrian Bridge, in Tulsa, Oklahoma.
The COTU site consists of a multimodal pedestrian, bicycle and vehicle bridge, paved with concrete and brick, and with curved concrete bench seats and planter beds that create a low, circular feature at the bridge's center. The curved benches support an acoustic echo and audible sound focusing feature, which has made the location an iconic place for locals to stop in, speak or holler, listen, and experience the phenomenon.

This report presents our findings regarding the acoustic feature, feasibility recommendations, and comments on conceptual designs for proposed redesigns, and preservation of iconic acoustic features.

Figure 1 - Existing Project Site, View Looking East

Figure 2 - Existing Project Site, Plan View (provided by Selser Schaefer Architects)
(dba) JEAcoustics

4. Acoustic Focusing at COTU

Selser Schaefer Architects (SSA) visited the project site to conduct observations and measurements of the COTU acoustic feature, along with audio recordings with paper sheet to obstruct the reflection patterns for our review and analysis. JEA has also reviewed various recorded examples of the acoustic feature in publicly available videos posted online (e.g., YouTube).

Based on our review of site plans and recordings, we worked with the MKSK and SSA to develop the following conceptual illustrations of the primary focusing features at the COTU site.

THE SCIENCE AND THE PHENOMENON

Sound Reflection	Anti-Focusing Surface	Focusing Surface
Sound waves are reflected from a surface similar to light waves from a shiny surface or prism	Convex or angled surfaces disperse reflecting sound waves outward and produce a more even sound	Concave surfaces focus the reflecting sound waves inward and produce "hat spots"

THE SCIENCE AND THE PHENOMENON

Figure 4 - COTU Focusing Features (excerpts from MKSK/SSA presentation 12-Dec-2022)

COUSTICS
Center of the Universe, Tulsa, Oklahom Acoustic Features Analys Report No. 22030-01
January 6, 2023; Page
Engineered Vibration Acoustic \& Noise Solutions

Several factors could affect the audibility of the focusing feature at COTU

- The location of the observer (needs to be at central medallion, or "eye")
- Weather conditions (we understand dry weather conditions seem to be ideal)
- Presence of ambient noises (best in quiet conditions, low winds, no trains)
- Obstruction of inner bench faces (obstructions interfere with the focusing)
- Height of observer (may need further study)

Figure 5 - COTU Focusing in Dimensioned Plan
As a person standing at the "eye" of COTU speaks, sound of their own voice will emanate in all directions. Some of that vocal sound may reflect from the hard bridge pavement surrounding them, and reflect again from the hard, curved, vertical concrete bench surfaces surrounding them back to their ears. The time it would take for that sound to travel (at the speed of sound through air at $75^{\circ} \mathrm{F}$) from one's mouth back to their ears as illustrated below would be approximately 50 milliseconds (50 ms delay). Many $50-\mathrm{ms}$ "first reflections" would happen simultaneously around the observer, front, back, and sides, reinforcing a strong echo experience.
~50 ms

Figure 6 - COTU Focusing "First Reflection"

In general, a reflected echo is considered to be audible or noticeable to human ears if it has a delay around $50-60 \mathrm{~ms}$ or more, and becomes very noticeable or distracting at more than 80 ms .

COUSTICS

Center of the Universe, Tulsa, Oklahoma

In addition to the "first reflection" having approximately $50-\mathrm{ms}$ delay, further reflections within the COTU reflection ring can propagate onward. Just a couple of those onward reflections are illustrated below, producing potentially $100-\mathrm{ms}$ and $200-\mathrm{ms}$ delay echoes, and possibly longer, up to 300 ms (or 0.3 seconds).
Longer delays are perceived as more prominent or more noticeable echoes Longer delays may be perceived more often or more prominently by shorter observers, as shown with the $200-\mathrm{ms}$ illustration below, compared to taller folks.

Figure 7 - COTU Focusing "Onward Reflections"

5. Recommendations

Preservation
In order to preserve the existing acoustic feature along with proposed redesign and renovations on the bridge at COTU, we have developed the following recommendations:

1. Avoid new features inside the reflection ring that could obstruct the primary mouth-to-ear sound reflection paths illustrated in Figures 5-7.
2. Avoid new features or structures outside or above the reflection ring that could reflect much sound back to the ear (at a different distance or with a different quality than the existing bench-and-pavement reflections provide).

- New curved bench walls, planter beds, backrests, and overhead shades outside of preserved reflection ring could add a new and different focusing reflections that "muddle" the existing acoustic feature and experience.
- New benches or planter boxes need to "hide" tucked entirely behind and outboard of the existing reflection ring as much as practical
- Utilize careful shaping and design of new bench backrests and upper lips of outer planter bed rings that may reflect sounds inward.
- Bench seat backs or other new railings above existing reflective benches
(dba) JEAcoustics

COUSTICS

Center of the Universe, Tulsa, Oklahoma
Acoustic Features Analysi
Report No $22030-0$
January 6, 2023; Page
should maintain at a minimum 22% open area to allow sound to pass through without reflecting back into the reflection ring or back to the "eye" location. Natural plantings tend to be acoustically transparent.

- Slanting the seat backs should also help, and further study can determine ideal angle to plan for those seat backs to reflect sound upward and away from center "eye" location, along with $>22 \%$ open area to be safe.
- Overhead shade structures above the ring or outside the ring (if any) should be designed with care, mindful of adding possible reflections back into the central ring area. Shade panels, sheets, fabrics, solid framing members and structural elements such as beams or edges, all need to have attention to shape, material, perforation, or geometry that does not focus reflected sound towards the center at ear level. Those things could possibly reflect sounds inward at heights well above ear level if needed.
- Large surfaces of shade panels, fabrics, or sheathing should have enough open perforation (again, 22% or more open and breathable) to let sound pass through without bouncing sound downward or inward.

3. Avoid significantly changing the existing texture or reflectivity of the bridge's pavement surfaces and inner vertical concrete bench surfaces within the reflection ring.

- Hard brick or concrete pavers or similar surfaces equal to the existing conditions should be fine at the bridge deck in order to repair or replace damaged areas
- Porous paving units, grated surfaces, granular rubber, earth/grass pavers should not be planned.

4. Avoid new features or structures that could generate noise to disturb or distract occupants, detracting attention from the acoustic feature experience (parts moving, squeaking, whistling, rustling in windy conditions).

- Shade constructions need to be stiff enough that light breezes do not often set panels in motion to generate uncontrolled noise.
- It could be a challenge to know which shapes like that can generate noise in winds unless we have built examples to rely on. Hanging fabric panels would certainly flap in the wind, and should be avoided. Tree or shrub leaves can also rustle in the wind, but would likely be fine.

Enhancement

In addition to preservation, MKSK asked for suggestions on enhancing the acoustic features (perhaps so it could be better experienced on rainy days or for people of different heights). JEA does not recommend significant additions or enhancements. The existing feature is a simple reflection system, and yet, it seems to have complexity and nuance. Given the slight bend in the bridge

COUSTICS

Engineered Vibration Acoustic \& Noise Solutions
Center of the Universe, Tulsa, Oklahoma Acoustic Features Analysis Report No. 22030-01 January 6, 2023; Page 7
center, the non-symmetrical ring array of four benches, and other existing things that make it unique and not a perfect circle. Messing with that to provide some enhancement would be tricky; nevertheless, the following are suggested concepts that could be tested or evaluated:
a) For example, more length of curved concrete bench could be added "in line" with the existing ring, replicating the same bench profile, texture, toe kick dimensions, etc. Maybe that would be an enhancement, maybe not.
b) Adding to the height of the existing bench could add reflective ring surface to boost the focus inward, but adding too much height makes the benches impractical for sitting, or effectively builds a walled enclosure for a different experience. Maybe that would be a feature enhancement; probably not.
c) It may be possible to smooth out the existing concrete, grind it smoother, or add concrete sealer finish to fill in pores so it does not retain moisture, or dries quicker. Tricky, tricky. We do not know that these sorts of modifications would improve the feature.

Given the guidelines recommended above, the Team developed conceptual plans dated 12-Decembe-2022, shown below.

Figure 8 - COTU 12-Dec-2022 Concept Plan

The current schematic plan is showing a short section of new curved bench and planter bed on the southeast quadrant, extending out behind the existing acoustic reflection ring or "echo feature" bench, which is not recommended (see the red outlined bench corner above, left). This is an example of new additions to avoid, or which need to be designed with special attention to solid geometry such

COUSTICS

Engineered Vibration Acoustic \& Noise Solutions
Center of the Universe, Tulsa, Oklahoma Acoustic Features Analys Report No. 22030-0
January 6, 2023; Page January 6, 2023; Page
that it is shaped to reflect sound away from the center, or is simply eliminated in order to avoid a new contributing reflection pattern (red reflection arrow in Figure 9, below).
Another approach in this specific case is to modify the schematic plan, to tuck any new additions of southeast planter bed and benches east of the blue dashed line where the existing planter bed now resides.

Figure 9 - Comments for 12-Dec-2022 Concept Plan Southeast Quadrant

We hope this discussion of acoustic features and recommendations for Center of the Universe assists with your evaluation and planning for the proposed project. Please contact me directly with any questions.

Submitted by,
Clund Nla inel
Chad Himmel, PE
Associate, JEAcoustics
Texas Registered Engineering Firm F-6534

